16-kDa prolactin inhibits endothelial cell migration by down-regulating the Ras-Tiam1-Rac1-Pak1 signaling pathway.

نویسندگان

  • Sok-Hyong Lee
  • Jeannette Kunz
  • Sue-Hwa Lin
  • Li-yuan Yu-Lee
چکیده

Angiogenesis plays a key role in promoting tumorigenesis and metastasis. The 16-kDa fragment of prolactin (16k PRL) is an NH(2)-terminal natural breakdown fragment of the intact 23-kDa prolactin and has been shown to have potent antiangiogenic and antitumor activities. The mechanism(s) involved in the action of 16k PRL in endothelial cells remains unclear. In this study, we showed that 16k PRL reduced rat aortic endothelial cell (RAEC) migration in a wound-healing assay and in a Matrigel tube formation assay, suggesting that 16k PRL inhibits endothelial cell migration, an important activity involved in angiogenesis and tumorigenesis. We further investigated how 16k PRL attenuates endothelial cell migration. We first showed that RAEC migration is mediated through the Rho GTPase Rac1, as Rac1 inhibition by the Rac1-specific inhibitor NSC27366 or Rac1 knockdown by small interfering RNA both blocked RAEC migration. We next showed that 16k PRL reduced the activation of Rac1 in a concentration-dependent manner. Furthermore, 16k PRL inhibition of Rac1 is mediated through the suppression of T lymphoma invasion and metastasis 1 (Tiam1) and its upstream activator Ras in a phosphoinositide-3-kinase-independent manner. 16k PRL also down-regulated the phosphorylation of the downstream effector of Rac1, p21-activating kinase 1 (Pak1), and inhibited its translocation to the leading edge of migrating cells. Thus, 16k PRL inhibits cell migration by blocking the Ras-Tiam1-Rac1-Pak1 signaling pathway in endothelial cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Long non-coding RNA FOXO1 inhibits lung cancer cell growth through down-regulating PI3K/AKT signaling pathway

Objective(s): Lung cancer is one of the most common malignant tumors, which seriously threatens the health and life of the people. Recently, a novel long non-coding RNA (lncRNA) termed lncFOXO1 was found and investigated in breast cancer. However, the effect of lncFOXO1 on lung cancer is still ambiguous. The current study aimed to uncover the functions of lncFOXO1 in l...

متن کامل

Rab23 promotes squamous cell carcinoma cell migration and invasion via integrin β1/Rac1 pathway

Rab23 was a member of Ras-related small GTPase family, which played a key role in the regulation of Shh signaling pathway. However, the function and regulatory mechanism of Rab23 in cutaneous squamous cell carcinoma was unknown. In this study, we found that the expression level of Rab23 was higher in moderately to poorly tumor differentiation tissue and non-exposed positions, and no statistical...

متن کامل

Regulation of Stat5 by FAK and PAK1 in Oncogenic FLT3- and KIT-Driven Leukemogenesis.

Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation t...

متن کامل

Ankyrin–Tiam1 Interaction Promotes Rac1 Signaling and Metastatic Breast Tumor Cell Invasion and Migration

Tiam1 (T-lymphoma invasion and metastasis 1) is one of the known guanine nucleotide (GDP/GTP) exchange factors (GEFs) for Rho GTPases (e.g., Rac1) and is expressed in breast tumor cells (e.g., SP-1 cell line). Immunoprecipitation and immunoblot analyses indicate that Tiam1 and the cytoskeletal protein, ankyrin, are physically associated as a complex in vivo. In particular, the ankyrin repeat do...

متن کامل

Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/- mast cells.

Neurofibromatosis type 1 (NF1) is a common genetic disorder caused by mutations in the NF1 locus, which encodes neurofibromin, a negative regulator of Ras. Patients with NF1 develop numerous neurofibromas, which contain many inflammatory mast cells that contribute to tumor formation. Subsequent to c-Kit stimulation, signaling from Ras to Rac1/2 to the MAPK pathway appears to be responsible for ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cancer research

دوره 67 22  شماره 

صفحات  -

تاریخ انتشار 2007